基于概念的解释性方法旨在使用一组预定义的语义概念来解释深度神经网络模型的预测。这些方法在新的“探针”数据集上评估了训练有素的模型,并将模型预测与该数据集中标记的视觉概念相关联。尽管他们受欢迎,但他们的局限性并未被文献所理解和阐明。在这项工作中,我们分析了基于概念的解释中的三个常见因素。首先,选择探针数据集对生成的解释有深远的影响。我们的分析表明,不同的探针数据集可能会导致非常不同的解释,并表明这些解释在探针数据集之外不可概括。其次,我们发现探针数据集中的概念通常比他们声称要解释的课程更不太明显,更难学习,这使解释的正确性提出了质疑。我们认为,仅在基于概念的解释中才能使用视觉上的显着概念。最后,尽管现有方法使用了数百甚至数千个概念,但我们的人类研究揭示了32个或更少的概念更严格的上限,除此之外,这些解释实际上不太有用。我们对基于概念的解释性方法的未来发展和分析提出建议。可以在\ url {https://github.com/princetonvisualai/overlookedfactors}找到我们的分析和用户界面的代码。
translated by 谷歌翻译
在过去的十年中,深度学习模型在机器学习的不同领域取得了巨大的成功。但是,这些模型的大小和复杂性使它们难以理解。为了使它们更容易解释,最近的一些作品着重于通过人类解剖的语义属性来解释深神网络的部分。但是,仅使用语义属性完全解释复杂的模型可能是不可能的。在这项工作中,我们建议使用一小部分无法解释的功能来增强这些属性。具体而言,我们开发了一个新颖的解释框架(通过标记和未标记分解的解释),将模型的预测分解为两个部分:一个可以通过语义属性的线性组合来解释,而另一部分则取决于未解释的功能。 。通过识别后者,我们能够分析模型的“无法解释的”部分,从而了解模型使用的信息。我们表明,一组未标记的功能可以推广到具有相同功能空间的多种型号,并将我们的作品与两种流行的面向属性的方法,可解释的基础分解和概念瓶颈进行比较,并讨论Elude提供的其他见解。
translated by 谷歌翻译
由于机器学习越来越多地应用于高冲击,高风险域,因此有许多新方法旨在使AI模型更具人类解释。尽管最近的可解释性工作增长,但缺乏对所提出的技术的系统评价。在这项工作中,我们提出了一种新的人类评估框架蜂巢(可视化解释的人类可解释性),用于计算机愿景中的不同解释性方法;据我们所知,这是它的第一个工作。我们认为,人类研究应该是正确评估方法对人类用户的可解释方式的金标。虽然由于与成本,研究设计和跨方法比较相关的挑战,我们常常避免人类研究,但我们描述了我们的框架如何减轻这些问题并进行IRB批准的四种方法,这些方法是代表解释性的多样性:GradCam,Bagnet ,protopnet和prodotree。我们的结果表明,解释(无论它们是否实际正确)发芽人类信任,但用户对用户不够明确,以区分正确和不正确的预测。最后,我们还开展框架以实现未来的研究,并鼓励更多以人以人为本的解释方法。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在同时定位和映射(SLAM)中,环路闭合检测(LCD)对于在识别先前访问的地方时最小化漂移至关重要。视觉袋(VBOW)一直是许多最先进的大满贯系统的LCD算法。它使用一组视觉功能来提供健壮的位置识别,但无法感知特征点之间的语义或空间关系。先前的工作主要集中在解决这些问题上,通过将VBOW与现场对象的语义和空间信息相结合。但是,他们无法利用局部视觉特征的空间信息,并且缺乏统一语义对象和视觉特征的结构,因此限制了两个组件之间的共生。本文提出了SymbiolCD2,该symbiolcd2创建了一个统一的图形结构,以在共生的方式集成语义对象和视觉特征。我们的新型基于图的LCD系统通过应用具有时间限制的Weisfeiler-Lehman图内核来利用统一的图结构,以稳健地预测循环闭合候选者。对所提出的系统的评估表明,具有结合语义对象和视觉特征的统一图结构提高了LCD预测精度,这说明了所提出的图形结构在这两个互补组件之间提供了强烈的共生。它还优于其他机器学习算法 - 例如SVM,决策树,随机森林,神经网络和基于GNN的图形匹配网络。此外,它在比最先进的SLAM系统的早期检测循环闭合候选方面表现出良好的性能,这表明统一图结构的扩展语义和空间意识会显着影响LCD的性能。
translated by 谷歌翻译
最近显示外部眼睛照片显示出糖尿病性视网膜疾病和HBA1C升高的迹象。在本文中,我们评估外部眼睛照片是否包含有关其他系统性医疗状况的信息。我们开发了一个深度学习系统(DLS),该系统将外部眼睛的照片作为输入,并预测多个全身参数,例如与肝脏有关的参数(白蛋白,AST);肾脏(EGFR使用无种族的2021 CKD-EPI肌酐方程,尿液ACR);骨与矿物质(钙);甲状腺(TSH);和血数(HGB,WBC,血小板)。开发利用了49,015例糖尿病患者的151,237张图像,在加利福尼亚州洛杉矶县的11个地点接受糖尿病眼镜筛查。评估重点是9个预先指定的全身参数,并利用了3个验证集(a,b,c),涵盖了28,869名患有和没有糖尿病的患者,在加利福尼亚州洛杉矶县和大亚特兰大地区的3个独立地点进行了眼睛筛查。我们将结合了可用临床人口统计学变量的基线模型(例如年龄,性别,种族/种族,糖尿病年)进行了比较。相对于基线,DLS在检测AST> 36,钙<8.6,egfr <60,HGB <11,血小板<150,ACR> = 300和WBC <4时,在检测AST> 36,钙<8.6,Egfr <60,HGB <60,HGB <60,calcium <8.6,Egfr <60,calcium <8.6和wbc <4时,达到了统计学上的显着性能,并且类似于开发集的人口),其中DLS的AUC超过基线的AUC,增长了5.2-19.4%。在验证集B和C方面,与开发集相比,患者人群的差异很大,DLS的表现优于ACR> = 300的基线,而HGB <11升至7.3-13.2%。我们的发现提供了进一步的证据,表明外部眼睛照片包含跨越多器官系统的全身健康生物标志物。需要进一步的工作来研究这些生物标志物是否以及如何转化为临床影响。
translated by 谷歌翻译
我们从一组稀疏的光谱时间序列中构建了一个物理参数化的概率自动编码器(PAE),以学习IA型超新星(SNE IA)的内在多样性。 PAE是一个两阶段的生成模型,由自动编码器(AE)组成,该模型在使用归一化流(NF)训练后概率地解释。我们证明,PAE学习了一个低维的潜在空间,该空间可捕获人口内存在的非线性特征范围,并且可以直接从数据直接从数据中准确地对整个波长和观察时间进行精确模拟SNE IA的光谱演化。通过引入相关性惩罚项和多阶段训练设置以及我们的物理参数化网络,我们表明可以在训练期间分离内在和外在的可变性模式,从而消除了需要进行额外标准化的其他模型。然后,我们在SNE IA的许多下游任务中使用PAE进行越来越精确的宇宙学分析,包括自动检测SN Outliers,与数据分布一致的样本的产生以及在存在噪音和不完整数据的情况下解决逆问题限制宇宙距离测量。我们发现,与以前的研究相一致的最佳固有模型参数数量似乎是三个,并表明我们可以用$ 0.091 \ pm 0.010 $ mag标准化SNE IA的测试样本,该样本对应于$ 0.074 \ pm。 0.010 $ mag如果删除了特殊的速度贡献。训练有素的模型和代码在\ href {https://github.com/georgestein/supaernova} {github.com/georgestein/supaernova}上发布
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译